当前位置: 首页 > >

青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态_图文

植物生态学报

2012, 36 (5): 382–392

doi: 10.3724/SP.J.1258.2012.00382 http://www.plant-ecology.com

Chinese Journal of Plant Ecology

青藏高原东缘高山森林-苔原交错带土壤微生物生 物量碳、氮和可培养微生物数量的季节动态
刘 洋
摘 要

张 健* 闫帮国



旭 徐振锋 吴福忠

四川农业大学生态林业研究所, 长江上游林业生态工程省级重点实验室, 成都 611130

为了了解青藏高原东缘高山森林-苔原交错带土壤微生物的特征和季节变化, 研究了米亚罗鹧鸪山原始针叶林、林

线、树线、密灌丛、疏灌丛和高山草甸土壤微生物生物量碳(MBC)、氮(MBN)和可培养微生物数量的季节动态。结果表明, 植 被类型和季节动态对MBC、 MBN和微生物数量都有显著影响。 不同时期的微生物在各植被类型间分布有差异, 植物生长季初 期和生长季中期, 树线以上群落的MBC高于树线下的群落, 而到生长季末期恰恰相反, 暗针叶林、林线和树线的MBC显著升 高, 各植被之间MBC的差异减小; 微生物数量基本上也是以树线为界, 树线以下群落土壤微生物数量显著低于树线以上群 落, 其中密灌丛的细菌数量最高; 可培养微生物数量为生长季末期>生长季初期>生长季中期。 生长季末期真菌数量显著增加, 且MBC/MBN最高。统计分析表明, MBN与细菌、真菌、放线菌数量存在显著的相关关系, 而MBC仅与真菌数量存在显著相关 关系( p < 0.05)。 植物生长季末期大量的凋落物输入和雪被覆盖可能是微生物季节变异的外在因素, 而土壤微生物和高山植物 对有效氮的竞争可能是微生物季节变异的内在因素。 植物生长季初期对氮的吸收和土壤微生物在植物生长季末期对氮的固定 加强了高山生态系统对氮的利用。气候变暖可能会延长高山植物的生长季, 增加高山土壤微生物生物量, 加速土壤有机质的 分解, 进而改变高山土壤碳的固存速率。 关键词 高山森林-苔原交错带, 季节动态, 土壤微生物生物量, 土壤微生物数量

Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra ecotone, Eastern Qinghai-Tibetan Plateau, China
LIU Yang, ZHANG Jian*, YAN Bang-Guo, HUANG Xu, XU Zhen-Feng, and WU Fu-Zhong
Key Laboratory of Forestry Ecological Engineering of Upstream of the Yangtze River of Sichuan Province, Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu 611130, China

Abstract Aims The forest-alpine tundra ecotone is one of the most conspicuous climate-driven ecological boundaries. However, dynamics of soil microbial biomass and quantity during different stages of the growing season in the ecotone remain unclear. Our objective was to understand the temporal and spatial variations of microbial biomass and quantity to explore the main drivers in the ecotone. Methods We collected soil samples in a forest-alpine tundra ecotone (dark-conifer forest, timberline, treeline, dense shrub, sparse shrub and alpine meadow) during early, mid and late growing season (EGS, MGS and LGS). The number and species composition of soil microorganisms were determined by means of the plate count method. Soil microbial biomass carbon (MBC) and nitrogen (MBN) were measured by the chloroform fumigation leaching method. Important findings Vegetation and seasonality significantly influence MBC, MBN and microbial community structure. Microbial biomass distribution among vegetation types was different in the three stages of the growing season. MBC above treeline was higher than below during EGS and MGS. The MBC of dark-conifer forest, timberline and treeline during LGS was significantly increased, and MBC differences among different vegetation types decreased. There were significant differences in measured soil microbial quantity between above- and below-treeline vegetation types; bacteria of dense shrub were highest among vegetation types. The amount of cultivated microorganisms was LGS>EGS>MGS. The ratio of MBC to MBN was the highest and the quantity of fungi increased largely late in the growing season. Statistical analysis showed that there were significant correlations between MBN and bacteria, fungi and actinomyces quantity, while only MBC and fungi quantity were
—————————————————— 收稿日期Received: 2011-12-09 接受日期Accepted: 2012-02-15 * 通讯作者Author for correspondence (E-mail: sicauzhangjian@163. com)

刘洋等: 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态

383

significantly correlated (p < 0.05). Litter input and snow cover late in the growing season were external factors of microbial seasonal variation. Soil microbes and alpine plants competing for nitrogen may be internal factors. Plant nitrogen absorption early in the growing season and microorganisms’ nitrogen fixation late in the growing season enhanced the alpine ecosystem’s nitrogen fixation and utilization. Climate warming may extend the growing season of alpine plants, increasing the alpine soil microbial biomass, and accelerate the decomposition of soil organic matter, which may change soil carbon sequestration rates in the alpine ecosystem. Key words forest-alpine tundra ecotone, seasonal dynamics, soil microbial biomass, soil microbial quantity

高山林线是山地森林最显著的生态界限(Holtmeier, 2003)。由于极端的环境条件, 林线生物类群 均处于相对复杂的临界状态, 是典型的生态脆弱区 (Butler et al., 1994)和气候变化敏感地带(K?rner & Paulsen, 2004)。高山森林-苔原交错带(alpine foresttundra ecotone, AFTE)涵盖了从暗针叶林到矮曲林、 高山灌丛及草甸等各种植被类型, 包括了高山林线 (timberline) 和 树 线 (treeline) 等 重 要 的 生 态 界 限 (Holtmeier, 2003)。高山森林-苔原交错带是全球高 山地区普遍存在的植被过渡区。由于短距离内不同 植被类型的交错分布, 使得高山森林与苔原之间基 因交流、个体迁移和种替代等过程对气候变化的反 应可能更加敏感而迅速(刘洋等, 2009)。因此, 高山 森林-苔原交错带成为指示气候变化、能量交换、 物 质循环及生物多样性预警方面的热点区域(Kupfer & Cairns, 1996; Alftine et al., 2003; Walther et al., 2005; Díaz-Varela et al., 2010)。 植被在高山的受限分布可能导致相应的土壤 生态过程的变化, 对环境敏感的土壤微生物可以作 为高山气候变化的预警及敏感指标。土壤微生物的 群落结构通常受到植被(Balser & Firestone, 2004)和 季节动态(Bardgett et al., 1999; Waldrop & Firestone, 2006; Bj?rk et al., 2008)的影响。近年来, 有关高山 生态系统土壤微生物的研究逐渐增多, 涉及高山苔 原土壤微生物群落的季节动态(Bj?rk et al., 2008), 高山苔原微生物群落结构及功能群(Lipson et al., 2002), 苔原不同植被类型下土壤微生物生物量、养 分有效性及氮矿化潜力(Chu & Grogan, 2010), 高山 林线土壤微生物生物量及生理类群数量(齐泽民和 王开运, 2009), 高山区土壤微生物数量及其与生态 因子的相关性(邵宝林等, 2006)等。 但由于高山林线 所处的海拔太高, 且开展研究工作难度较大, 对青 藏高原东缘高山土壤微生物及其相关的土壤生态 过程的研究还十分欠缺。

高山/亚高山是研究气候变化的关键区域, 监 控这些敏感和脆弱的生态系统对反映气候变化有 重要价值。 高山生态系统受季节性雪被的作用明显, 存在明显的生长季节和非生长季节(Schadt et al., 2003; Bj?rk et al., 2008)。在川西高山地区, 冬季土 壤冻结期长达5–6个月, 每年11月至次年4月形成季 节性雪被(Wu et al., 2010), 从5月到10月是植物开 始生长到生长结束的季节。研究发现, 气候变化可 能改变高山生态系统的季节性雪被状况和土壤冻 融循环过程, 影响高山生态系统碳氮循环(ACIA Secretariat, 2005), 进而显著影响土壤微生物生物量 和群落结构(Lipson & Monson, 1998; Koponen et al., 2006)。 地处青藏高原东缘和长江上游的川西林区分 布着世界上海拔较高的高山森林-苔原交错带, 研 究该区域的土壤微生物的季节动态及其影响因素 对预测和理解全球气候变化对高山生态系统的影 响具有重要的意义。因此, 本文以青藏高原东缘的 米亚罗鹧鸪山高山森林-苔原交错带(原始针叶林、 林线、树线、密灌丛、疏灌丛和高山草甸)的土壤微 生物为研究对象, 研究了微生物生物量碳氮和可培 养微生物数量的季节动态, 以期深入了解全球气候 变化背景下高山生态系统的土壤微生物特征。

1

研究地概况和样地描述
四 川 省 理 县 米 亚 罗 林 区 (31°43′–31°51′ N,

102°40′–103°02′ E), 位于青藏高原东缘褶皱带最外 缘, 岷江上游主要支流杂谷脑河上游, 海拔 2 200–5 500 m, 年平均气温6–12 ℃, 1月平均气温 –8 ℃, 7月平均气温12.6 ℃, 年积温为1 200–1 400 ℃, 年 降 水 量 为 600–1 100 mm, 年 蒸 发 量 为 1 000–1 900 mm, 具有降水次数多、强度小的特点。 地形以石质山地为主, 土壤具有粗骨(石砾含量高) 和薄层等特征。从低海拔到高海拔, 土壤类型依次 为山地暗棕壤、棕色针叶林土、高山草甸土。杂谷
doi: 10.3724/SP.J.1258.2012.00382

384

植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (5): 382–392

脑河北侧的鹧鸪山山体海拔3 200–4 800 m, 这是大 渡河与岷江的分水岭, 为重要的江河源区。山地的 垂直地带性明显, 自河谷至山顶依次分布有针阔混 交林、暗针叶林、高山灌丛、高山草甸等。 本研究范围在米亚罗鹧鸪山(31°51′428′′ N、 102°41′230′′ E)海拔3 900–4 200 m的高山森林-苔原 交错区。从低海拔到高海拔, 植被类型由暗针叶林 过渡到高山苔原, 地被物厚度逐渐降低, 土壤类型 由棕色针叶林土过渡到高山草甸土。这一区域包括 了典型的自然条件下形成的林线和树线, 能很好地 反映川西高山森林-苔原交错带植被、 土壤及地被物 的生态特征。采用GPS定位, 沿垂直于等高线方向, 在高山森林-苔原区域设置海拔高差300 m、宽30 m 的3条样带, 样带与样带之间距离约500 m。在样带 上以海拔50 m间距设置样地(样地面积为30 m × 30 m, 约1 000 m ), 从低海拔到高海拔, 样地分别经 过暗针叶林、林线、树线、密灌丛、疏灌丛和高山 草甸6个植被群落类型。 于2009年8月植被生长旺季, 对样地的基本特征进行了调查, 结果见表1。 高山森林-苔原交错带暗针叶林优势树种是岷 江冷杉(Abies faxoniana), 灌木优势种有大理杜鹃 (Rhododendron taliense)、皱皮杜鹃(R. wiltonii)、鹧 鸪杜鹃(R. zheguense)、冰川茶藨(Ribes glaciale)、华 西小檗(Berberis silva-taroucana)、红毛花楸(Sorbus rufopilosa)、 细枝绣线菊(Spiraea myrtilloides)、窄 叶鲜卑花(Sibiraea angustata)、柳叶忍冬(Lonicera lanceolata)、刚毛忍冬(L. hispida)、越橘叶忍冬(L. myrtillus)、叉柱柳(Salix divergentistyla)、金露梅
2

(Potentilla fruticosa), 草本优势种为野黄韭(Allium 东方草莓 rude)、 圆穂蓼(Polygonum macrophyllum)、 (Fragaria orientalis)、肾叶龙胆(Gentiana crassuloides)、箭叶橐吾(Ligularia sagitta)等。苔藓种类有 塔 藓 (Hylocomium splendens) 、 锦 丝 藓 (Actinothuidium hookeri)、大羽藓(Thuidium cymbifolium)、 万年藓(Clinacium dendroides)、 地钱(Marchantiaceae spp.)等。

2

材料和方法
2009年5月4日–11月2日, 在林内距地面1.5 m

和土壤深度10 cm处分别安置一个纽扣式温度记录 器(iButton DS1923-F5, Dallas Semiconducotr, Dallas, USA), 同步监测空气温度和土壤温度, 每2 h自动 记录1次数据。土壤样品采集于2009年5月4号、8月 2号和11月2号。 各标准地中以“S”形布点, 去除表层 的苔藓、枯枝落叶后, 用直径为5 cm的土钻采集样 地内0–10 cm表层的土壤, 10个样点的土壤混合后 作为一个土样。采集的土壤放入无菌塑料袋内, 置 于有冰袋的保鲜盒中运回实验室。去掉可见植物残 根和石块后, 用四分法取舍, 过2 mm筛后, 混合均 匀, 保存于4 ℃冰箱中备用。土壤中的细菌、真菌 和放线菌数量分别采用牛肉蛋白胨培养方法、马铃 薯葡萄糖琼脂培养基和高氏1号培养基法测定(中国 科学院南京土壤研究所微生物室, 1985), 细菌、真 菌、放线菌均采用平板计数法计数。土壤微生物生 物量碳和氮采用改进的氯仿熏蒸-K 2 SO 4 浸提法测 定(吴金水, 2006), 提取液中的碳和氮采用有机碳

表1 高山森林-苔原交错带基本特征 Table 1 Basic characteristics of alpine forest-tundra ecotone
样带 Belt transect 暗针叶林 Dark-conifer forest 3 900 EN 5 32 22.0 10 80 20 10.0 9.0 林线 Timberline 3 975 EN 4 34 14.0 20 75 30 4.5 8.0 树线 Treeline 4 050 EN 5 40 8.0 50 70 40 4.0 5.8 密灌丛 疏灌丛 高山草甸 Dense shrub Sparse shrub Alpine meadow 4 105 EN 5 36 5.0 35 65 60 1.8 4.5 4 135 EN 3 38 1.5 20 20 90 0.5 2.5 4 200 EN 3 34 - 10 - 85 0.6 1.2

海拔 Elevation (m) 坡向 Slope aspect (°) 坡度 Slope degree (°) 木本植物平均高度 Wood average height (m) 草本植物平均高度 Herbage average height (cm) 郁闭度 Crown density (%) 草本植物盖度 Cover degree of herb (%) 苔藓厚度 Thickness of moss (cm) 枯落物厚度 Thickness of litter (cm)

www.plant-ecology.com

刘洋等: 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态

385

自 动 分 析 仪 (Total organic carbon analyzer-2500, Shimadzu Corporation, Japan)测定。 采用SPSS 11.5 for Windows统计软件作统计分 析, 对每个植被及每个季节的土壤微生物, 采用单 因素方差分析(one-way ANOVA)方法, 检验土壤生 物参数在植被类型和季节动态上的差异。用双因素 方差分析(two-way ANOVA)检验植被类型和季节动 态及其交互作用对土壤微生物生物量碳、氮和微生 物数量的影响, 微生物生物量碳、氮与细菌、真菌、 放线菌数量的关系采用Pearson相关分析, 用Excel 做图表。

3
3.1 态

研究结果
高山森林-苔原交错带大气温度和土壤温度动 根据温度记录器每2 h自动监测的数据, 可以

看出, 高山森林-苔原交错带5–10月的日平均气温 基本都在0 ℃以上(图1A), 土壤月平均温度也都高 于0 ℃ (图1B), 这个阶段可作为高山植被的生长季 节。生长季节月平均气温和土壤温度分别为: 5月 4.12 ℃和3.33 ℃、6月6.74 ℃和6.08 ℃、7月8.95 ℃ 和8.86 ℃、8月8.71 ℃和9.16 ℃、9月7.57 ℃和8.30 ℃、10月1.46 ℃和3.22 ℃。其中, 5月和10月的平均 气温和土壤温度最低, 8月的土壤温度最高。因此, 将5月作为高山植物的生长季初期, 8月作为植物生 长季中期, 10月作为生长季末期。不同植被类型之 间土壤温度有差异, 从暗针叶林到高山草甸, 5–10 月的土壤平均温度为暗针叶林5.25 ℃、林线5.17 ℃、树线5.69 ℃、密灌丛6.81 ℃、疏灌丛8.16 ℃、 高山草甸7.86 ℃。各植被类型中, 林线土壤月平均 温度最低, 而疏灌丛和高山草甸的土壤月平均温度 高于其他植被类型。 3.2 土壤微生物生物量和数量动态 对比交错带不同植被类型的土壤微生物生物 量碳氮分布及其比值(图2A、 2C)和可培养细菌、 2B、 真菌、放线菌数量(图2D、2E、2F)发现, 细菌数量 占绝对优势, 占整个微生物总数的91.61%–99.81%, 放线菌数次之, 放线菌的比例介于0.16%–8.31%, 真菌数量最少, 不到微生物总数的0.1%。生长季初 期, 林线的土壤微生物生物量碳显著低于高山草 甸、疏灌丛和密灌丛, 且林线土壤微生物生物量氮 也显著低于其他植被; 树线以下细菌、真菌、放线 菌数量显著低于树线以上。在生长季中期, 草甸的 微生物生物量碳、氮最高, 草甸和密灌丛微生物生 物量碳显著大于其他植被, 密灌丛的微生物生物量 氮显著高于其他植被, 林线的土壤微生物生物量氮 显著低于其他植被; 树线以下土壤细菌数量显著低 于树线以上, 草甸土壤真菌数量显著高于其他植 被, 密灌丛土壤放线菌数量显著高于其他植被。生 长季末期, 密灌丛土壤的微生物生物量碳显著低于 其他植被, 树线以下微生物生物量氮、细菌及放线 菌数量显著低于树线以上, 林线和暗针叶林土壤的 真菌数量显著低于其他植被。暗针叶林、林线和树 线的土壤MBC/MBN显著高于其他植被类型。 对比交错带不同季节微生物的变化, 各植被类 型微生物生物量碳(MBC)初期显著低于中期和末 期, 疏灌丛、 树线、 林线和暗针叶林三个季节间MBC 差异显著。各植被类型的微生物生物量氮(MBN)的 季节变化趋势不一致, 但林线MBN具有显著的季节
doi: 10.3724/SP.J.1258.2012.00382 图1 2009年5月至10月高山森林-苔原交错带日平均气温 (A)和土壤月平均温度(B)动态。AM, 高山草甸; DCF, 暗针 叶林; DS, 密灌丛; SS, 疏灌丛; Ti, 林线; Tr, 树线。 Fig. 1 Dynamics of average daily air temperature (A) and soil temperature at 10 cm depth by month (B) from May to October, 2009 in the forest-alpine tundra ecotone. AM, alpine meadow; DCF, dark-conifer forest; DS, dense shrub; SS, sparse shrub; Ti, timberline; Tr, treeline.

386

植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (5): 382–392

图2 高山森林-苔原交错带土壤微生物生物量碳(A)、氮(B)和碳氮比(C)和可培养细菌(D)、真菌(E)、放线菌(F)数量的季节变 化(平均值±标准偏差)。 不同小写字母表示相同季节里植被之间差异显著(p < 0.05); 不同大写字母表示相同植被在不同季节之 间差异显著(p < 0.05)。EGS, 生长季初期; LGS, 生长季末期; MGS, 生长季中期。AM, 高山草甸; DCF, 暗针叶林; DS, 密灌 丛; SS, 疏灌丛; Ti, 林线; Tr, 树线。 Fig. 2 Seasonal changes of soil microbial biomass carbon (A), nitrogen (B) and C: N (C), as well as quantity of cultivate bacteria (D), fungi (E) and actinomycetes (F) of soil in forest-alpine tundra ecotone (mean ± SD). Lower case letters indicate significant differences among different vegetations within same season (p < 0.05); upper case letters indicate significant differences among different seasons within same vegetation (p < 0.05). EGS, early in the growing season; LGS, late in the growing season; MGS, middle in the growing season. AM, alpine meadow; DCF, dark-conifer forest; DS, dense shrub; SS, sparse shrub; Ti, timberline; Tr, treeline.

变化。暗针叶林、林线、树线和高山草甸末期的土 壤细菌数量显著高于生长季初期和中期, 密灌丛中 期的土壤细菌数量显著高于初期和末期。树线、疏 灌丛和高山草甸末期的土壤真菌数量显著高于初 期和中期, 林线季节之间土壤真菌数量差异不显 著。树线以上的土壤放线菌数量在植物生长季末期
www.plant-ecology.com

显著大于生长季初期和生长季中期, 树线以下土壤 放线菌数量在季节之间差异不显著。MBC/MBN的 趋势为生长季末期>生长季中期>生长季初期。 以植被类型和季节变异作为处理因子, 对土壤 微生物生物量碳、氮及其比值, 以及细菌、真菌、 放线菌数量进行双因素方差分析, 结果见表2。 总的

刘洋等: 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态

387

表2 植被类型(从暗针叶林到高山草甸)和季节(5–10月三次采样)及其交互作用对高山森林-苔原交错带10 cm深处土壤微生 物生物量碳、氮和微生物数量的双因素方差分析结果 Table 2 Results of two-way ANOVA for the analysis of the main effects of vegetation types (from dark-conifer forest to alpine meadow), season (three times collections from May to October) and their interactions for soil microbial biomass C, N and microbe quantity determined in 10-cm depth soil layer in forest-alpine tundra ecotone
变量 Variable 微生物生物量碳 MBC 微生物生物量氮 MBN 微生物生物量碳氮比 MBC/MBN 细菌 Bacteria 真菌 Fungi 放线菌 Actinomycetes 植被 Vegetation df 5 5 5 5 5 5 F 20.64 120.48 26.53 86.20 55.36 51.18 p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 df 2 2 2 2 2 2 季节 Season F 481.75 7.44 541.92 22.59 166.69 58.46 p <0.001 0.004 <0.001 <0.001 <0.001 <0.001 植被×季节 Vegetation×season df 10 10 10 10 10 10 F 14.40 20.21 17.07 7.16 14.13 14.37 p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

MBC, microbial biomass carbon; MBN, microbial biomass nitrogen.

来看, 植被类型、 季节变化及其两者的交互效应对土 壤微生物生物量碳、氮及其比值, 以及细菌、真菌、 放线菌数量都有显著作用(p < 0.001或p = 0.004 4)。 3.3 土壤微生物生物量碳、 氮和微生物数量的关系 三个季节的微生物数据的相关分析结果(图3) 表明, 土壤微生物生物量碳、氮与细菌、真菌、放 线菌数量存在一定的线性正相关关系。其中, MBC 与真菌数量呈显著正相关关系(p < 0.05), MBC与细 菌、放线菌数量相关性不显著(p > 0.05); MBN与细 菌、真菌数量呈极显著正相关关系(p < 0.01), MBN 与放线菌数量呈显著正相关关系(p < 0.05)。

量基本上也是以树线为界, 树线以下群落土壤微生 物数量显著低于树线以上群落, 其中密灌丛的土壤 细菌数量最多。可能由于草本植物根系发达, 密集 于表层, 根系分泌物和脱落物是微生物丰富的能源 物质, 有利于土壤养分的积累和微生物的生长繁殖 (丁玲玲等, 2007; 何容等, 2009)。 同时, 植被也会影响土壤温度和水分等环境特 征, 这都是影响微生物群落结构和功能的潜在因 素。低温和短的生长季是高山生态系统的两个主要 特征。温度控制假说认为, 生长季节平均土壤温度 (10 cm深处) (6.7 ± 0.8) ℃是全球林线分布的控制因 子(K?rner & Paulsen, 2004)。 从生长季节土壤月平均 温度来看, 并不是随海拔升高土壤温度呈降低趋 势, 疏灌丛和高山草甸的土壤月平均温度高于其他 植被类型, 林线所处的土壤月平均温度最低。鹧鸪 山林线海拔接近4 000 m, 而王朗自然保护区林线 海拔3 300 m, 海拔、温度、植被等因素可能导致鹧 鸪山林线交错带土壤微生物总数少于王朗林线交 错带的土壤微生物数量(齐泽民和王开运, 2009)。 一 些研究表明, 交错带物质交换和能量流动比相邻的 群落更频繁、物种多样性更高(Risser, 1995; Callaway et al., 2002), 如王朗自然保护区林线过渡带比 邻近植被土壤具有相对较强的生物学活性, 表层土 壤细菌、真菌、放线菌及微生物总量高于邻近植被 上缘流石滩草甸与下缘冷杉林(齐泽民等, 2009)。 但 本研究结果发现, 林线的土壤微生物生物量和数量 在整个森林-苔原交错带中并不是最高的。 土壤微生物群落的季节动态对于植物吸收利 用土壤中的氮有重要意义。植物和微生物在季节动
doi: 10.3724/SP.J.1258.2012.00382

4

讨论
土壤微生物生物量和数量的分布受气候条件、

土壤质地、 植被组成和覆盖度的综合影响(Nielsen et al., 2009)。许多研究发现, 土壤微生物与地上植被 的关系密切(Lipson & Monson, 1998; Rajaniemi & Allison, 2009), 植被类型会影响土壤微生物群落结 构和数量。 Imberger和Chiu (2001)的研究表明, 从高 山针叶林过渡到草甸, 10 cm土层的微生物生物量 显著下降。也有相反的结论: 武夷山中亚热带常绿 阔叶林、针叶林、亚高山矮林, 以及高山草甸土壤 微生物生物量随海拔升高而增大(何容等, 2009)。 本 研究发现, 不同时期土壤微生物在各植被类型间分 布有差异。植物生长季初期和生长季中期, 树线以 上群落的MBC高于树线下的群落, 而到生长季末期 则恰恰相反, 暗针叶林、林线和树线MBC显著升高, 各植被间MBC的差异减小, 可能是生长季末期森林 凋落物的大量输入和雪被覆盖所致。土壤微生物数

388

植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (5): 382–392

图3 土壤微生物生物量碳、氮与细菌、真菌、放线菌数量的相关关系。 Fig. 3 Relationships between soil microbial biomass carbon, nitrogen and bacteria, fungi, actinomycetes quantity.

态上尽量避免对氮的竞争, 植物生长季初期对氮吸 收和微生物在生长期末对氮的固定增强了高山生 态系统对氮的固定和利用(Jaeger et al., 1999; Miller et al., 2009)。微生物生物量的周转是植物生长季节 吸收有机氮和无机氮的最大来源(Schmidt et al., 2007)。在科罗拉多州的高山草甸的土壤, 已观察到 微生物生物量在秋季和冬季增长而在融雪的春季 迅速下降(Lipson et al., 2002), 这些微生物生物量 的季节变化与高山植物对有效性氮的利用相关。融 雪造成大量的蛋白质从冬季微生物中释放出来, 这
www.plant-ecology.com

些蛋白质转化为生长期可供植物吸收的氨基酸。 Lipson和Monson (1998)的研究表明, 植物在生长季 前期大量吸收氮用于植物生长, 微生物对氮的固定 主要发生在植物凋落后。土壤微生物生物量和数量 的季节波动与植物生长季末期大量的凋落物输入 有关(Liu et al., 2003; Schadt et al., 2003; Devi & Yadava, 2006; Waldrop & Firestone, 2006; Nielsen et al., 2009), 因为10月正是高山植物凋落的高峰期。 研究结果发现, 植物生长季初期的MBC显著低于生 长季中期和末期, 可能是因为积雪融化后大量的真

刘洋等: 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态

389

菌降解转化, 导致MBC降低。MBN的季节变化趋势 各植被之间有差异, 并不是所有的植被都表现为生 长季末期高于生长季初期和中期, 只有高山草甸和 林 线 的 季 节 变 化 与 MBC 一 致 , 可 能 是 Lipson 和 Monson (1998)与Lipson等(2002)的研究只限于高山 嵩草草甸, 并没有包括针叶林和灌丛等植被类型, 植被类型和微环境的差异可能造成MBN的季节变 化不同。 相关研究也证明: 不同植被类型、季节变化和 年际动态对土壤微生物群落组成和数量都有显著 影响(Kieft et al., 1998; 刘满强等, 2003; Waldrop & Firestone, 2006)。土壤微生物主要以植物残体为营 养源, 森林-苔原交错带凋落物的质和量的变化必 然 导 致 土 壤微 生 物 在 各植 物 群 落 中分 布 不 均 一 (Lipson & Monson, 1998; Sun et al., 2009)。地上/地 下凋落物调节着土壤碳氮库大小及周转速率, 进而 影响了土壤微生物的群落构成和生物量(Bardgett et al., 1999; Sun et al., 2009)。Waldrop和Firestone (2006)也研究证实, 植被或季节的变化实质上导致 了土壤生态系统养分和碳循环的改变, 从而影响了 微生物群落的结构。由于本研究缺乏对各植被类型 凋落物输入量、土壤有效养分的监测, 引起土壤微 生物在植被类型和季节动态上的变异机制还有待 于进一步研究。 通常真菌和细菌在土壤环境中占据不同的生 态位, 细菌在土壤氮转化过程中起着重要作用, 而 真菌在土壤碳和能源循环过程中作用巨大 (Imberger & Chiu, 2001; 杨万勤等, 2006)。 本研究结 果也证实了这一点, MBC与土壤真菌数量呈显著正 相关关系, MBN与土壤细菌数量呈极显著正相关关 系。 定量真菌/细菌的比例很重要(West, 1986)。 土壤 微生物生物量碳氮比反映了土壤中真菌和细菌的 比例(Fauci & Dick, 1994)。 本项研究结果表明, 生长 季末期MBC/MBN显著增加, 说明土壤真菌数量增 多。虽然对细菌和真菌各自的生物量还无法判断, 但从可培养的微生物数量来看, 生长季末期真菌数 量较生长季初期和中期显著增多。秋冬季土壤生态 系统中真菌占优势, 主要是真菌比细菌更善于消化 纤维素, 有利于分解凋落物, 而在夏季, 植物生长 分 泌 出 的 淀粉 和 糖 能 为土 壤 细 菌 提供 食 物 来 源 (Krajick, 2006)。Pennisi (2003)研究发现, 真菌是冬 季土壤微生物的优势类群, 真菌生物量冬季是夏季

的3倍, 冬季真菌的生物量是细菌的15倍。Lipson等 (2002)对落基山干旱草甸的研究表明, 土壤微生物 生物量在秋冬季升高, 春季雪被融化后迅速降低, 冬季真菌与细菌的比值更高。苔原土壤微生物生物 量在冬季积雪达到高峰期, 真菌生物量占大多数 (Schadt et al., 2003)。Imberger和Chiu (2001)研究认 为, 从亚高山针叶林过渡到高山草甸, 0–10 cm表层 土壤的真菌/细菌比例降低, 说明随着植被变化土 壤中的木质素和纤维素含量逐渐降低。我们研究发 现, 生长季中期和生长季末期的MBC/MBN在树线 区域最高, 且可培养的土壤真菌/细菌比值在整个 生长季节也是树线区域最高, 可能是树线区域土壤 中木质素和纤维素含量偏高。但本实验没有测定土 壤中木质素和纤维素的含量, 还需进一步研究。 高山生态系统是受气候变化影响最明显的区 域(IPCC, 2007)。Pauli等(2007)的研究表明, 过去50 年中, 欧洲阿尔卑斯山的升温是全球平均气温升高 的2倍以上, 青藏高原升温速度相当于全球变暖速 率的3倍。 全球变暖导致高山冰川消融加速, 山地冰 川和积雪面积呈退缩趋势, 雪线和林线位置上升。 1957–2003年观测发现, 气候变化使阿尔卑斯山中 部山地生态交错带向上移动, 平均每10年林线、树 线和苔原线分布向高海拔迁移25 m、13 m、11 m (Díaz-Varela et al., 2010)。目前发现, 相对于非生长 季节, 生长季节岷江冷杉凋落物具有最高的MBC和 MBN (周晓庆等, 2011)。美国西部和欧洲山地生态 系统的冬季积雪大幅减少, 使雪被下的土壤微生物 群落呈指数增加, 有机物质分解速率加快(Monson et al., 2006)。气候变暖使许多亚高山/高山积雪消融 时间提前(Walther et al., 2002), 这可能延长高山植 物的生长季, 使植物获得更多的碳, 并增加生物 量。由此推测, 气候变暖可能会使高山土壤微生物 生物量增加, 加速土壤有机质的分解, 使土壤中更 多的碳释放到大气中, 进而加剧了气候变暖的 趋势。

5

结论
综上所述, 高山森林-草甸交错带植被类型和

季节动态对土壤微生物生物量碳、氮和微生物群落 结构都有显著作用。交错带MBC在植物生长季末期 显著高于生长季中期和初期, MBC的季节动态变异 大于MBN。可培养微生物数量季节动态为生长季末
doi: 10.3724/SP.J.1258.2012.00382

390

植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (5): 382–392 Butler DR, Malanson GP, Cairns DM (1994). Stability of alpine treeline in Northern Montana, USA. Phytocoenologia, 22, 485–500. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FL, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002). Positive interactions among alpine plants increase with stress. Nature, 417, 844–848. Chu HY, Grogan P (2010). Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant and Soil, 329, 411–420. Devi NB, Yadava PS (2006). Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 31, 220–227. Díaz-Varela RA, Colombo R, Meroni M, Calvo-Iglesias MS, Buffoni A, Tagliaferri A (2010). Spatio-temporal analysis of alpine ecotones: a spatial explicit model targeting altitudinal vegetation shifts. Ecological Modelling, 221, 621–633. Ding LL (丁玲玲), Qi B (祁彪), Shang ZH (尚占环), Long RJ (龙瑞军), Zhou QX (周启星) (2007). The characteristics of soil microorganism quantity under different alpine grasslands in eastern Qilian Mountain. Journal of Agro-Environment Science ( 农 业 环 境 科 学 学 报 ), 26, 2104–2111. (in Chinese with English abstract) Fauci MF, Dick RP (1994). Microbial biomass as an indicator of soil quality: effects of long-term management and recent soil amendments. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA eds. Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Minneapolis, USA. 229–234. He R (何容), Wang JS (汪家社), Shi Z (施政), Fang YH (方燕 鸿), Xu ZK (徐自坤), Quan W (权伟), Zhang ZX (张增 信), Ruan HH (阮宏华) (2009). Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi Mountains, China. Acta Ecologica Sinica (生态学报), 29, 5138–5144. (in Chinese with English abstract) Holtmeier FK (2003). Mountain Timberlines: Ecology, Patchiness, and Dynamics. Kluwer Academic Publishers, Dordrecht, the Netherlands. Imberger KT, Chiu CY (2001). Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biology and

期>生长季初期>生长季中期。生长季末期交错带土 壤真菌数量显著增加, 且MBC/MBN在三个季节中 最高。在植物生长季初期和中期, 林线的微生物生 物量处于低谷, 树线可以作为交错带微生物数量的 分界线, 树线以下群落的土壤微生物数量显著低于 树线以上群落。MBN和细菌、真菌和放线菌存在显 著的相关关系, 而MBC仅和真菌数量存在显著的相 关关系。导致这些结果出现的机制还有待于深入研 究, 如细菌和真菌各自的生物量及不同季节土壤微 生物多样性可作为下一步研究的内容。本研究结果 为深入了解高山森林-苔原交错带土壤微生物群落 结构及相应的土壤生态学过程提供了重要的科学 依据, 对于理解全球气候变化对陆地生态系统的影 响具有重要的意义。 致谢 国家自然科学基金项目(31170423和31000213)、教育部博士点基金项目(20115103120003和 20105103110002)和博士后基金项目(20110491732)、 四川省教育厅重点项目(2011ZA079)、四川省科技 支撑计划项目(2010NZ0051)、四川省杰出青年学术 技术带头人培育计划项目(2011JQ0035)资助。感谢 四川农业大学林学院苏江峰、李勇、刘凯、钟军、 李泽波、赖刚、李瑞久、柯巍等同学在野外群落调 查和采样过程中的帮助。 参考文献
ACIA Secretariat (2005). Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK. 1042. Alftine KJ, Malanson GP, Fagre DB (2003). Feedback-driven response to multidecadal climatic variability at an Alpine treeline. Physical Geography, 24, 520–535. Balser TC, Firestone MK (2004). Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry, 73, 395–415. Bardgett RD, Lovell RD, Hobbs PJ, Jarvis SC (1999). Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology & Biochemistry, 31, 1021–1030. Bardgett RD, McAlister E (1999). The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biology and Fertility of Soils, 19, 282–290. Bj?rk RG, Bj?rkman MP, Andersson MX, Klemedtsson L (2008). Temporal variation in soil microbial communities in Alpine tundra. Soil Biology & Biochemistry, 40, 266–268. www.plant-ecology.com

刘洋等: 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态 Fertility of Soils, 33, 105–110. IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds. Climate Change in 2007: Mitigation. Cambridge University Press, Cambridge, UK. Jaeger CH, Monson RK, Fisk MC, Schmidt SK (1999). Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology, 80, 1883–1891. Koponen HT, Jaakkola T, Kein?nen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ (2006). Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biology & Biochemistry, 38, 1861–1871. K?rner C, Paulsen J (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713–732. Krajick K (2006). Living the high life: the mountaintop environment of the Andes harbors a Noah’s ark of previously undocumented species. Natural History, 115, 44–50. Kupfer JA, Cairns DM (1996). The suitability of montane ecotones as indicators of global climatic change. Progress in Physical Geography, 20, 253–272. Lipson DA, Monson RK (1998). Plant-microbe competition for soil amino acids in the alpine tundra: effects of freezethaw and dry-rewet events. Oecologia, 113, 406–414. Lipson DA, Schadt CW, Schmidt SK (2002). Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology, 43, 307–314. Liu MQ (刘满强), Hu F (胡锋), He YQ (何园球), Li HX (李辉 信) (2003). Seasonal dynamics of soil microbial biomass and its significance to indicate soil quality under different vegetations restored on degraded red soils. Acta Pedologica Sinica (土壤学报), 40, 937–943. (in Chinese with English abstract) Liu Y (刘洋), Zhang J (张健), Yang WQ (杨万勤) (2009). Responses of alpine biodiversity to climate change. Biodiversity Science (生物多样性), 17, 88–96. (in Chinese with English abstract) Microbial Room of Nanjing Institute of Soil Science, Chinese Academy of Sciences (中国科学院南京土壤研究所微生 物室) (1985). Method of Soil Microbial Research (土壤微 生物研究法). Science Press, Beijing. (in Chinese) Miller AE, Schimel JP, Sickman JO, Skeen K, Meixner T, Me-

391

lack JM (2009). Seasonal variation in nitrogen uptake and turnover in two high-elevation soils: mineralization responses are site-dependent. Biogeochemistry, 93, 253– 270. Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006). Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439, 711–714. Nielsen PL, Andresen LC, Michelsen A, Schmid IK, Kongstad J (2009). Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants. Applied Soil Ecology, 42, 279– 287. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007). Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 13, 147–156. Pennisi E (2003). Neither cold nor snow stops tundra fungi. Science, 301, 1307. Qi ZM (齐泽民), Wang KY (王开运) (2009). Soil properties of the subalpine timberline ecotone in Western Sichuan. Journal of Soil and Water Conservation (水土保持学报), 23, 158–162. (in Chinese with English abstract) Qi ZM (齐泽民), Wang KY (王开运), Zhang YB (张远彬), Xie YH (谢玉华) (2009). The soil properties of the subalpine timberline ecotone and adjacent vegetations in Western Sichuan. Acta Ecologica Sinica ( 生 态 学 报 ), 29, 6325–6332. (in Chinese with English abstract) Rajaniemi TK, Allison VJ (2009). Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biology & Biochemistry, 41, 102–109. Risser PG (1995). The status of the science examining ecotones. BioScience, 45, 318–325. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003). Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 301, 1359–1361. Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AP (2007). Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology, 88, 1379–1385. Shao BL (邵宝林), Gong GS (龚国淑), Zhang SR (张世熔), Yu X (余霞), Yang DL (杨丹玲), Zhang H (张洪) (2006). Soil microbial quantity and its relations with ecological factors in northern alp region of Hengduan Mountains. doi: 10.3724/SP.J.1258.2012.00382

392

植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (5): 382–392 Chinese Journal of Ecology (生态学杂志), 25, 885–890. (in Chinese with English abstract) inhibition technique to measure eukaryote: prokaryote ratios in soils. Journal of Microbiological Methods, 5, 125–138. Wu JS (吴金水) (2006). Soil Microbial Biomass Measurement Method and Its Application (土壤微生物生物量测定方法 及其应用). China Meteorological Press, Beijing. (in Chinese) Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135–140. Yang WQ (杨万勤), Zhang J (张健), Hu TX (胡庭兴) (2006). Forest Soil Ecology (森林土壤生态学). Sichuan Science and Technology Press, Chengdu. (in Chinese) Zhou XQ (周晓庆), Wu FZ (吴福忠), Yang WQ (杨万勤), Zhu JX (朱剑霄) (2011). Dynamics of microbial biomass during litter decomposition in the alpine forest. Acta Ecologica Sinica (生态学报), 31, 4144–4152. (in Chinese with English abstract)

Sun G, Luo P, Wu N, Qiu PF, Gao YH, Chen H, Shi FS (2009). Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry, 41, 86–91. Waldrop MP, Firestone MK (2006). Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microbial Ecology, 52, 470–479. Walther GR, Bei?ner S, Pott R (2005). Climate change and high mountain vegetation shifts. In: Broll G, Keplin B eds. Mountain Ecosystems, Studies in Treeline Ecology. Springer, Berlin. 77–95. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Guldberg OH, Bairlein F (2002). Ecological responses to recent climate change. Nature, 416, 389–395. West AW (1986). Improvement of the selective respiratory

责任编委: 傅声雷

责任编辑: 王



www.plant-ecology.com




友情链接: hackchn文档网 营销文档网 爱linux网 爱行业网 时尚网